Kulikovskiy–Sveshnikova–Beghin model of powder snow avalanches: Development and application
نویسندگان
چکیده
[1] A simple theoretical model, the Kulikovskiy–Sveshnikova–Beghin (KSB) model, is outlined, describing the motion of a particle cloud moving down an incline. This model includes both the entrainment of surrounding ambient fluid and the entrainment of particles from the slope and is equally valid for Boussinesq and non-Boussinesq flows. However, this model can predict physically impossible densities when there is significant particle entrainment. Modifications to the model are proposed which eliminate this problem by including the entrained snow volume. With the modified model, physically realistic mean densities are predicted which have a significant impact on the Richardson number–dependent ambient entrainment. The improvements are illustrated by comparing analytical solutions to the original and the modified KSB equations for the case of a particle cloud traveling on a slope of constant angle, with constant ambient fluid and particle entrainment. Solving the modified model numerically, predictions are compared with data from several large powder snow avalanches at the Swiss Vallée de la Sionne avalanche test site. The modified KSB model appears to capture the dynamics of the avalanche front well; however, problems remain with relating the theoretical geometry to a real avalanche geometry. The success of this model in capturing the front dynamics shows that with careful assumptions that reflect the physics, it is possible to describe aspects of complex flows such as powder snow avalanches with simple models.
منابع مشابه
پهنهبندی گذرگاههای بهمن خیزاستانکردستان
Risk is an inevitable part of life, every day people are somehow at risk. Different risks in various forms and perspectives have different functions. Kurdistan province, with various heights and relatively good rainfall, It results the country's cold spots. Since most of seasonal rainfall occurs in winter, Snow cover is often the domain and passes it hillsides. One of the concerns of people in ...
متن کاملThe Savage-Hutter avalanche model: how far can it be pushed?
The Savage-Hutter (SH) avalanche model is a depth-averaged dynamical model of a fluid-like continuum implementing the following simplifying assumptions: (i) density preserving, (ii) shallowness of the avalanche piles and small topographic curvatures, (iii) Coulomb-type sliding with bed friction angle delta and (iv) Mohr-Coulomb behaviour in the interior with internal angle of friction phi> or =...
متن کاملAPPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS IN SNOW MECHANICS
In the present work, failure of a snow slab is analyzed by accounting Normal mode criteria. The analysis has been extended to include residual stress into the model (in addition to body forces). Intensity of crack energy release rate, and displacement components have been derived and their values have been estimated. The obtained results have been compared with the existing snow slab failure mo...
متن کاملCalibration and application of the MN2D dynamics model to the avalanches of Las Leñas (Argentina)
During the winters of 1999 and 2000 large avalanches occurred in the ski resort of Las Leñas (Los Andes, Mendoza, Argentina). On 8 September 1999 an avalanche of new, dry snow ran over a path with a 1000 m vertical drop. On 30 June and on 1 July 2000 five avalanches of similar vertical drop, which start with new snow, entrained very wet snow during their descent, and evolved into dense snow ava...
متن کاملModelling the system behaviour of wet snow avalanches using an expert system approach for risk management on high alpine traffic roads
The presented approach describes a model for a rule-based expert system calculating the temporal variability of the release of wet snow avalanches, using the assumption of avalanche triggering without the loading of new snow. The knowledge base of the model is created by using investigations on the system behaviour of wet snow avalanches in the Italian Ortles Alps, and is represented by a fuzzy...
متن کامل